E9602 TECH LIBRARY KAFB, NM # RESEARCH MEMORANDUM ALTITUDE-WIND-TUNNEL INVESTIGATION OF COMBUSTION-CHAMBER PERFORMANCE ON J47 TURBOJET ENGINE By Carl E. Campbell Lewis Flight Propulsion Laboratory Cleveland, Ohio > AFMDC TECKNO L LIDDARY AFL 2811 > > CLASSIFIED DOCUMENT This document Commission classified information affecting the National Datement of the United States within the meaning of the Explorage Act, USS — St. 31 and 32. Its immediate for the revealing of its contents in any manner to an unauthorized person is graphitated by manner to an unauthorized person is graphitated by manner to an unauthorized person is graphitated by manner to an unauthorized person is graphitated only to person in-the military and naval services of the United States, graphoprised Civilian officers and employees of the Federal Government who have a legitimate interest service in the United States (titlenges of known longity and discretion who of necessity manner an united thread.) NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS December 15, 1950 RESTRICTED 6591 (Sco) Letter deted 16 Jone 83. 319. 98/13 ---- National Aeronautics and Space Administration Langley Research Contex Hampton, Virginia 23665 JUN 1 6 1983 139% Seaty to Attn of TO: Distribution FROM: 180A/Security Classification Officer SUBJECT: Authority to Declassify NACA/NASA Documents Dated Prior to January 1, 1960 (informal, carterpoide Effective this date, all material olassified by this Center prior to January 1, 1960, is declassified. This action does not include material derivatively classified at the Center upon instructions from other Agencies. Immediate re-marking is not required; however, until material is re-marked by lining through the classification and annotating with the following statement, it must continue to be protected as if classified: *Declassified by authority of LaRC Security Classification Officer (SCO) letter dated June 16, 1983," and the signature of person performing the re-marking. If re-marking a large amount of material is desirable, but unduly burdensome, custodians may follow the instructions contained in NRB 1640.4, subpart F, section 1203.504, paragraph (h). This declassification action complements earlier actions by the National Archives and Records Service (NARS) and by the NASA Security Classification Officer (SCO). In Declassification Review Program 807008, NARS declassified the Center's "Research Authorization" files, which contain reports, Research Authorizations, correspondence, photographs, and other documentation. Earlier, in a 1971 letter, the NASA 800 declassified all NACA/NASA formal series documents with the exception of the following reports, which must remain classified: | Document No. | cument No. | |--------------|------------| |--------------|------------| E-51A30 E-53G20 E-53G21 E-53K18 SL-54J21= #### Pirst Author Ragey Francisco Johnson Speener Westphal Fox Himmel 1983 C 3 NUL 804 884 2322 82:TT 468T-90-90 If you have any questions concerning this matter, please call Mr. William L. Simkins at extension 3281. Jess G. Ross 2898 Distribution: SDL 031 ce: NASA Scientific and Technical Information Facility P.O. Box 8757 EWI Airport, MD 21240 MASA--NIS-5/Security 180A/RIAD 139A/TULAD 139A/HLSImkins:elf 06/15/83 (3281) 139A/JS \$ 6-15. 73 AL-01 HEADS OF DRGANIZATIONS ALC SAN SAL SESTH \$15 FOLS JIAH SZEZ 198 108 82:11 Z661-50-50 2 tech Library Kafb, NM #### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS ## RESEARCH MEMORANDUM ATHITUDE-WIND-TUNNEL INVESTIGATION OF COMBUSTION-CHAMBER PERFORMANCE ON J47 TURBOJET ENGINE By Carl E. Campbell #### SUMMARY Combustion-chamber performance characteristics of the J47 turbojet engine were determined during an investigation of the complete engine in the NACA Lewis altitude wind tunnel. The data presented were obtained over a range of engine speeds at simulated altitudes from 5000 to 50,000 feet, flight Mach numbers from 0.21 to 0.97, and exhaust-nozzle-outlet areas from 280 to 342 square inches. The combustion-chamber performance characteristics are presented as functions of the engine speed corrected to NACA standard sea-level static conditions. At a corrected engine speed of 7900 rpm, the combustion efficiency with the standard exhaust nozzle varied from 0.95 to 0.99 over the range of altitudes and flight Mach numbers investigated. Combustion efficiency was lowered by increasing the exhaust-nozzle-outlet area. The combustion-chamber over-all total-pressure-loss ratio decreased with an increase in altitude. Increasing the flight Mach number increased the over-all totalpressure-loss ratio at medium and low corrected engine speeds, but in the region of maximum engine speed the effect of flight Mach number was negligible. Changing the exhaust-nozzle-outlet area from 280 to 342 square inches had no appreciable effect on the over-all total-pressure-loss ratio. The fractional loss in engine cycle efficiency due to combustion-chamber totalpressure losses was not affected by changes of altitude and flight Mach number at high corrected engine speeds. Increasing the exhaust-nozzle-outlet area increased the fractional loss in engine cycle efficiency over the entire range of corrected engine speeds. The fractional loss in cycle efficiency due to the combustion-chamber pressure losses was approximately 0.04 with the stendard exhaust nozzle at maximum engine speed. #### INTRODUCTION An investigation to determine the performance and operational characteristics of a J47 turbojet engine and its components has been conducted in the NACA Lewis altitude wind tunnel over a wide range of simulated-flight conditions. Performance characteristics of the combustion chamber are evaluated herein. Over-all engine performance characteristics are presented in reference 1. Compressor and turbine performance characteristics are presented in references 2 and 3, respectively. The manner of heat release and the flow characteristics of the combustion chamber influence the over-all performance of the turbojet engine. If combustion is incomplete, burning may occur through the turbine and raise the turbine-blade temperature above safe limits. The loss in total pressure through the combustion chamber reduces the cycle efficiency and also results in a slight reduction in the mass flow of air through the engine (reference 4). Results are presented to indicate the effect of altitude, flight Mach number, and exhaust-nozzle-outlet area on the combustion efficiency, the losses in total pressure occurring in the combustion chamber, and the fractional loss in engine cycle efficiency resulting from combustion-chamber pressure losses. The engine cycle efficiency is also presented. These results are shown graphically as a function of corrected engine speed and in tabular form. #### ENGINE AND INSTALLATION The J47 turbojet engine used in this investigation has a static sea-level thrust rating of 5000 pounds at an engine speed of 7900 rpm and a turbine-outlet temperature of 1275° F. At this rating, the air flow is 94 pounds per second and the fuel consumption is approximately 5250 pounds per hour. The principal components of this engine are a 12-stage axial-flow compressor, eight cylindrical through-flow combustion chambers, a single-stage impluse turbine, a tail pipe, and an exhaust nozzle. The exhaust nozzle, designated as standard, gave limiting turbine-outlet temperature at rated speed and static conditions at an altitude of 5000 feet, and had an outlet area of 280 square inches. In order to extend the range of investigation of the engine, oversize exhaust nozzles with outlet areas of 302 and 342 square inches were also used. The engine was mounted on a wing section that spanned the 20-foot-diameter test section of the altitude wind tunnel (fig. 1). Engine-inlet conditions corresponding to the simulated flight conditions were obtained by introducing dry refrigerated air from the tunnel make-up air system through a duct to the engine inlet. Air was throttled from approximately sea-level pressure to the desired pressure at the engine inlet, while the static pressure in the tunnel test section was maintained to correspond to the desired altitude. Pressure and temperature instrumentation was installed at several stations through the engine (fig. 2). The combustion-chamber performance is chiefly determined by instrumentation at the compressor outlet (station 3). the turbine inlet (station 4), the turbine outlet (station 6), and the exhaust-nozzle outlet (station 7). Instrumentation at these stations is shown in detail in figure 3. #### DESCRIPTION OF COMBUSTION CHAMBER The eight combustion chambers are the cylindrical through-flow type, as shown in the cross-sectional drawing of the engine in figure 2. Each combustion chamber is fitted with inlet and outlet ducts leading from the compressor outlet and to the turbine inlet, respectively. The combustion zone in each chamber is separated from the outer shell by a liner (fig. 4). Louvres in the upstream face of the liner dome admit primary air to the combustion zone. Secondary air enters the combustion zone through eight equally-spaced longitudinal rows of 3/4-inch diameter holes and a series of louvres on the liner surface. The cross-sectional area of the combustion zone in each chamber varies from approximately 0.282 square foot at the plane of the first series of secondary air holes to 0.328 square foot at the plane of the final series of holes. Each combustion chamber is equipped with a duplex fuel nozzle having a small-slot and large-slot element, and the nozzle extends into the combustion zone through a hole in the center of the liner dome. At the low fuel flows that accompany the starting process and operation at high altitude, all the fuel flows through the small slots, which are designed to provide a good spray pattern at fuel pressures down to approximately 20 pounds per square inch. As the fuel-flow requirements of the engine increase, a portion of the fuel, as determined by the
automatic flow-divider mechanism, is injected through the large-slot element of the nozzle. The ignition system consists of two high-voltage vibrator coils and two spark plugs. The vibrator coils are mounted on the upper half of the compressor casing and the spark plugs are installed in diametrically opposite combustion chambers. The spark-plug electrodes are located within the design spray cone of the fuel nozzles. Ignition is provided to the remaining combustion chambers through interconnecting cross-fire tubes. #### PROCEDURE The investigation extended over a range of simulated altitudes from 5000 to 50,000 feet and simulated-flight Mach numbers from 0.21 to 0.97. Two additional exhaust nozzles with outlet areas of 302 and 342 square inches were used on the engine as well as the standard-size exhaust nozzle, which had an outlet area of 280 square inches. Engine inlet-air temperatures were maintained at NACA standard values for simulated altitudes up to 25,000 feet. At pressure altitudes above 25,000 feet, the inlet-air temperature was approximately -20° F, which was the minimum temperature that could be obtained. Total pressure at the engine inlet was regulated to correspond to the pressure that would exist with complete free-stream ram-pressure recovery at each flight condition. Air-flow calculations were made from pressure and temperature measurements obtained at the cowl inlet. Fuel flow was measured with a rotameter. The symbols and the methods of calculation used to determine the combustion-chamber performance from the pressure and temperature measurements are given in the appendix. #### RESULTS AND DISCUSSION #### Combustion Efficiency In order to indicate the effect of altitude on combustion efficiency, results obtained with the standard exhaust nozzle are presented in figure 5 for a range of altitudes between 5000 and 50,000 feet at flight Mach numbers of 0.21 and 0.52. The effect of altitude on combustion efficiency was similar at both flight Mach numbers. At altitudes below 25,000 feet, the combustion efficiency reached peak values at corrected engine speeds between 5000 and 6000 rpm and then decreased to a value of 0.95 at a corrected engine speed of 7900 rpm. The reason for this decrease in combustion efficiency in the high engine-speed region is not clear. At altitudes above 25,000 feet, the combustion efficiency increased steadily with engine speed to values between 0.97 and 0.99 at a corrected engine speed of 7900 rpm. The values of combustion efficiency presented in this report are accurate to approximately ±0.04. NACA RM E9LO2 5 The effect of flight Mach number on the combustion efficiency with the standard exhaust nozzle is shown for altitudes of 25,000 and 35,000 feet in figure 6. The trends were in general the same at both altitudes with the combustion efficiency reaching values from 0.97 to 0.99 at a corrected engine speed of 7900 rpm. At any corrected engine speed above 5000 rpm, the variation of combustion efficiency with changes in flight Mach number from 0.21 to 0.97 was less than 0.03. The effect of exhaust-nozzle-outlet area on combustion efficiency at a flight Mach number of 0.21 and at simulated altitudes of 5000 and 25,000 feet is shown in figure 7. At an altitude of 5000 feet, the variation of combustion efficiency with engine speed was similar with each of the three exhaust nozzles. At this altitude, increasing the exhaust-nozzle-outlet area from 280 to 342 square inches reduced the peak efficiency from 0.99 to 0.97 and reduced the efficiency at a corrected engine speed of 7900 rpm from 0.95 to 0.93. At an altitude of 25,000 feet, the decrease in combustion efficiency with increased exhaust-nozzleoutlet area was more pronounced than at an altitude of 5000 feet, which was probably due to the lower combustion-chamber inlet pressure at 25,000 feet altitude. At this altitude at a corrected engine speed of 7900 rpm, the combustion efficiency decreased from 0.97 to 0.92 as the exhaust-nozzle area was increased from 280 to 342 square inches. #### PRESSURE LOSSES Measured values of over-all total-pressure-loss ratio were obtained directly from the pressure instrumentation at stations 3 and 4. Calculated values of over-all total-pressure-loss ratio were obtained by adding the friction and momentum pressure-loss ratios determined by the method explained in reference 5. Friction pressure losses were calculated by means of equation (7c) in the appendix with a value of the friction factor K determined from windmilling data. Momentum pressure losses were determined from the pressure-loss chart of reference 5 and the combustion-chamber equivalent area $A_{\rm b}$. The measured and calculated values of the over-all total-pressure-loss ratios were reasonably similar in magnitude and trend throughout the data investigated. The effect of altitude on over-all, friction, and momentum pressure-loss ratios with the standard exhaust nozzle at a flight Mach number of 0.21 is shown in figure 8. In general, an increase in altitude resulted in a decrease in the over-all total-pressure-loss ratio $\Delta P_{\rm T}/P_{\rm 3}.$ The friction and momentum pressure-loss data show that the reduction in $\Delta P_{\rm T}/P_{\rm 3}$ was due entirely to decreases in friction pressure loss as the altitude was increased. The momentum pressure-loss ratio $\Delta P_{\rm M}/P_{\rm 3}$ was unaffected by changes in altitude over the entire range of corrected engine speeds. At the design speed of 7900 rpm, the maximum value of $\Delta P_{\rm T}/P_{\rm 3}$ obtained with the standard exhaust nozzle at a flight Mach number of 0.21 was approximately 0.04. The effect of flight Mach number on the pressure-loss ratios with the standard exhaust nozzle at an altitude of 25,000 feet is shown in figure 9. An increase in flight Mach number resulted in a large increase in the over-all total-pressure-loss ratio at low corrected engine speeds because the increase in $\Delta P_{\rm F}/P_{\rm g}$ was greater than the decrease in $\Delta P_{\rm M}/P_{\rm g}$ as the flight Mach number was increased. At a corrected engine speed of 7900 rpm, the over-all total-pressure-loss ratio obtained with the standard exhaust nozzle was approximately 0.04 for all flight Mach numbers at a simulated altitude of 25,000 feet. The effect of exhaust-nozzle-outlet area on the combustion-chamber pressure-loss ratios at an altitude of 5000 feet and a flight Mach number of 0.21 is shown in figure 10. The over-all total-pressure-loss ratio was affected only slightly by the increase in exhaust-nozzle-outlet area. The friction pressure-loss ratio increased and the momentum pressure-loss ratio decreased as the nozzle area was increased, with the resultant small effect on $\Delta P_{\rm T}/P_{\rm 3}$ #### CYCLE-EFFICIENCY LOSSES The effect of altitude on the engine cycle efficiency η and the fractional loss in engine cycle efficiency $\Delta\eta/\eta$ due to combustion-chamber pressure losses is shown in figure 11 for the standard exhaust nozzle and a flight Mach number of 0.21. The value of $\Delta\eta/\eta$ decreased with an increase in corrected engine speed over the entire operating range. At corrected engine speeds above 5500 rpm, $\Delta\eta/\eta$ did not vary with altitude. The value of $\Delta\eta/\eta$ at the design corrected engine speed (7900 rpm) was about 0.04. The effect of flight Mach number on η and $\Delta\eta/\eta$ at an altitude of 25,000 feet with the standard exhaust nozzle is shown in figure 12. The fractional loss in cycle efficiency increased considerably with flight Mach number at corrected engine speeds below 6000 rpm. At the low corrected engine speeds, the value of $\Delta\eta/\eta$ was more than half of the efficiency obtained. In the region of the design corrected engine speed (7900 rpm), however, the value of $\Delta\eta/\eta$ was about 0.04 and was unaffected by changes in flight Mach number. The effect of exhaust-nozzle-outlet area on η and $\Delta\eta/\eta$ at an altitude of 5000 feet and a flight Mach number of 0.21 is shown in figure 13. Increasing the exhaust-nozzle-outlet area increased the value of $\Delta\eta/\eta$ over the entire operating range, particularly at the low corrected engine speeds. At the corrected engine speed of 7900 rpm, the values of $\Delta\eta/\eta$ obtained with exhaust-nozzle-outlet areas of 280, 302, and 342 square inches were 0.04, 0.06, and 0.10, respectively. ## SUMMARY OF RESULTS From an altitude-wind-tunnel investigation of a J47 turbojet engine, the following combustion-chamber performance characteristics were obtained: - 1. At a corrected engine speed of 7900 rpm, the combustion efficiency with the standard exhaust nozzle varied from 0.95 to 0.99 over the range of altitudes and flight Mach numbers investigated. Combustion efficiency was lowered by increasing the exhaust-nozzle outlet area. - 2. The combustion-chamber over-all total-pressure-loss ratio $\Delta P_{\rm T}/P_3$ decreased with an increase in altitude. Increasing the flight Mach number increased the value of $\Delta P_{\rm T}/P_3$ at medium and low corrected engine speeds, but in the region of maximum engine speed the effect of flight Mach number was negligible. Changing the exhaust-nozzle outlet area from 280 to 342 square inches had no appreciable effect on $\Delta P_{\rm T}/P_3$. At the design engine speed of 7900 rpm, the maximum value of $\Delta P_{\rm T}/P_3$ obtained with the standard exhaust nozzle was approximately 0.04 for all flight conditions investigated. - 3. The fractional loss in engine cycle efficiency $\Delta\eta/\eta$ due to combustion-chamber total-pressure losses was unaffected by changes in altitude and flight Mach number at high corrected engine speeds. At corrected engine speeds below 6000 rpm, an increase in flight Mach number increased $\Delta\eta/\eta$ considerably. Increasing the exhaust-nozzle-outlet area increased the value of $\Delta\eta/\eta$ over the entire operating range. At the design
engine speed of 7900 rpm, the fractional loss in cycle efficiency with the standard exhaust nozzle was approximately 0.04 at all flight conditions. Lewis Flight Propulsion Laboratory, National Advisory Committee for Aeronautics, Cleveland, Ohio. #### APPENDIX-CALCULATIONS #### Symbols The following symbols are used in this report: - A cross-sectional area, sq ft - A area of equivalent combustion chamber of constant cross section, sq ft - c_p specific heat at constant pressure, Btu/(lb)(OR) - f/a fuel-air ratio in combustion chamber - g acceleration due to gravity, 32.17 ft/sec2 - H total enthalpy, Btu/lb - J mechanical equivalent of heat, 778 ft-lb/Btu - K combustion-chamber friction pressure-loss factor - N rotational speed of engine, rpm - P total pressure, lb/sq ft absolute - AP_F friction pressure loss; loss in total pressure across combustion chamber due to friction, lb/sq ft - AP_M momentum pressure loss; loss in total pressure across combustion chamber due to heat addition, lb/sq ft - ΔP_T over-all total-pressure loss; loss in total pressure across combustion chamber due to friction and heat addition, lb/sq ft - p static pressure, lb/sq ft absolute - R gas constant, 53.3 ft-lb/(lb)(OR) - T total temperature, OR - T, indicated temperature, OR - t static temperature, OR - We air flow, lb/sec | W _f | fuel flow, lb/hr | • | |----------------|---|----------| | Wg | gas flow through combustion chamber, lb/sec | | | w _y | compressor-leakage air flow, lb/sec | 1218 | | W _z | turbine-cooling air flow, lb/sec | <u>6</u> | | 7 | ratio of specific heat at constant pressure to specific heat at constant volume | | | η | engine cycle efficiency | | | ∆ղ | loss in engine cycle efficiency resulting from combustion-
chamber pressure losses | - | | η _b | combustion efficiency | | | e _l | ratio of engine-inlet total temperature to NACA standard sea-level static temperature | | | o _T | air density measured under total (stagnation) conditions, lb/cu ft | | | Subs | cripts: | • | | 0 | free stream | • | | 1 | engine inlet | | | 3 | combustion-chamber inlet or compressor outlet | | | 4 | combustion-chamber outlet or turbine inlet | | | 6 | turbine outlet | | | 7 | exhaust-nozzle outlet | | | 9. | air | - | | b | combustion chamber | | | C | fuel | | | 1 | station at which static pressure in jet reaches free-stream static pressure | . ** | # Methods of Calculation Temperatures. - Static temperatures were obtained from indicated temperature readings by $$t = \frac{T_{i}}{1 + 0.85 \left(\frac{P}{p}\right)^{\frac{\gamma-1}{7}} - 1}$$ (1) where 0.85 is the thermocouple impact recovery factor. Total temperatures were calculated from the adiabatic relation between pressures and static temperatures. The equivalent free-stream static temperature t_0 was calculated from the engine-inlet temperature and ram-pressure ratio as follows: $$t_{O} = T_{1} \left(\frac{p_{O}}{P_{1}}\right)^{\frac{\gamma_{1}-1}{\gamma_{1}}}$$ (2) The static temperature of the exhaust-gas jet was calculated from the tail-rake instrumentation by $$t_{j} = t_{7} \left(\frac{p_{0}}{p_{7}}\right)^{\frac{\gamma_{7}-1}{\gamma_{7}}}$$ (3) No thermocouples were installed at the combustion-chamber outlet (station 4); in determining \mathbf{T}_4 , therefore, the enthalpy drop across the turbine was assumed equal to the measured enthalpy rise through the compressor corrected for variations of mass flow. The enthalpy at the turbine inlet is expressed as $$H_4 = H_6 + \frac{W_{a,1}}{W_g} H_3 - H_1$$ The turbine-inlet temperature \mathbf{T}_4 was then obtained from a temperature-enthalpy chart. Air flow. - Air flow was calculated from temperature and pressure measurements made at the engine inlet (station 1). $$W_{a,1} = \frac{p_1^{A_1}}{R} \sqrt{\frac{2gJc_p}{t_1} \left(\frac{p_1}{p_1}\right)^{\gamma-1}} - 1$$ (4) where the value of A1 is 3.041 square feet. Compressor-leakage air flow W_y and turbine-cooling air flow W_z were bled from the compressor; the resulting air flow entering the combustion chamber is therefore $$W_{a,b} = W_{a,l} - W_y - W_z$$ and the gas flow leaving the combustion chamber is expressed as $$W_g = W_{a,b} + \frac{W_f}{3600}$$ Combustion efficiency. - The combustion efficiency is defined as the ratio of the actual increase in the enthalpy of the gas while passing through the combustion chamber to the theoretical increase in enthalpy that would result from complete combustion of the fuel charge. Combustion efficiency was obtained from the expression $$\eta_b = \frac{H_4(1 + f/a) - H_{a,3}}{(f/a) \times 18,550}$$ (5) where the lower heating value of the fuel was 18,550 Btu per pound. The enthalpy values in this equation were obtained from T_3 and T_4 and a temperature-enthalpy chart based on a fuel-inlet temperature of 80° F and a hydrogen-carbon ratio of the fuel of 0.155 according to the method explained in reference 6. Pressure losses. - The measured over-all total-pressure-loss ratio was determined from total-pressure measurements at the combustion-chamber inlet and the combustion-chamber outlet according to the expression $$\frac{\Delta P_{\underline{T}}}{P_{\underline{3}}} = \frac{P_{\underline{3}} - P_{\underline{4}}}{P_{\underline{3}}} \tag{6}$$ The frictional and momentum pressure-loss ratios were determined by the method described in reference 5. This method involves the determination of the combustion-chamber friction pressure-loss factor K and the combustion-chamber equivalent area A. The friction pressure-loss factor K was determined from engine windmilling tests. The total-pressure losses obtained resulted from friction alone, inasmuch as no momentum pressure loss was introduced by heat addition. The friction pressure-loss factor K is defined by the relation $$\Delta P_{\mathbf{F}} = \frac{KW_{a,b}^2}{\rho_{\mathbf{T},3}} \tag{7a}$$ Therefore, using the perfect gas law, $$K = \left(\frac{\Delta P_{F}}{P_{S}}\right) \left(\frac{P_{S}^{2}}{RW_{a,b}^{2}T_{S}}\right)$$ (7b) By use of this equation, the value of K was determined from windmilling data to be 0.007. The friction pressure-loss ratios were then calculated for the performance data using this value of K in the following equation $$\frac{\Delta P_{F}}{P_{x}} = \frac{KRW_{a,b} Z_{T_{3}}}{P_{x}^{2}} \tag{7c}$$ A tentative momentum pressure-loss ratio was them obtained by subtracting $\Delta P_{\rm F}/P_{\rm 3}$ from the measured total-pressure-loss ratio. By use of the pressure-loss chart, the values of $\Delta P_{\rm F}/P_{\rm 3}$, the temperature ratio T_4/T_3 , and the tentative momentum pressure-loss ratio, an average value of $A_{\rm b}$ of 0.273 square foot was established from performance data for several flight conditions. This constant value of $A_{\rm b}$ and the pressure-loss chart were then used to determine the momentum pressure-loss ratio $\Delta P_{\rm M}/P_3$ for all performance data. The calculated over-all total-pressure-loss ratio was determined by the relation $$\frac{\Delta P_{T}}{P_{3}} = \frac{\Delta P_{F}}{P_{3}} + \frac{\Delta P_{M}}{P_{3}} \tag{8}$$ <u>Engine cycle efficiency</u>. - The engine cycle efficiency is defined by $\eta = \frac{\text{heat supplied to engine - heat rejected by engine}}{\text{heat supplied to engine}}$ $$\eta = \frac{\left[H_{4}(1+f/a)-H_{a,3}\right] - c_{p}(t_{j}-t_{0})}{\left[H_{4}(1+f/a)-H_{a,3}\right]}$$ (9) where c_n is the average value between stations j and 0. The loss in engine cycle efficiency resulting from combustionchamber pressure losses was calculated by the expression developed in reference 4: $$\Delta \eta = \frac{c_{p} t_{j} \left[1 - \left(\frac{P_{4}}{P_{3}} \right)^{\gamma} \right]}{\left[H_{4} (1+f/a) - H_{a,3} \right]}$$ (10) where c_p is the average value between stations j and 0 and γ is the average value between stations 4 and j. #### REFERENCES - 1. Conrad, E. William, and Sobolewski, Adam E.: Altitude-Wind-Tunnel Investigation of J47 Turbojet-Engine Performance. NACA RM E9G09, 1949. - 2. Prince, William R., and Jansen, Emmert T.: Altitude-Wind-Tunnel Investigation of Compressor Performance on J47 Turbojet Engine. NACA RM E9G28, 1949. - Thorman, H. Carl, and McAulay, John E.: Altitude-Wind-Tunnel Investigation of Turbine Performance in J47 Turbojet Engine. NACA RM E9K10, 1950. - 4. Pinkel, I. Irving, and Shames, Harold: Altitude-Wind-Tunnel Investigation of a 4000-Pound-Thrust-Axial-Flow Turbojet Engine. VI - Combustion-Chamber Performance. NACA RM ESF09e, 1948. ά NACA RM E9LO2 5. Pinkel, I. Irving, and Shames, Harold: Analysis of Jet-Propulsion-Engine Combustion-Chamber Pressure Losses. NACA Rep. 880, 1947. (Formerly NACA TN 1180.) 6. Turner, L. Richard, and Lord, Albert M.: Thermodynamic Charts for the Computation of Combustion and Mixture Temperatures at Constant Pressure. NACA TN 1086, 1946. | | | | | | | | | | _ | | | | | | |---
--|---|--|---|--|---|--|--|--|--|--|---|---|---| | | | | | | | | | | | COMBUS | TION-O | HAMBER | PERFO | RMARCE | | Bun | Altitude
(ft) | Ram pressure ratio, $P_{\rm L}/P_{\rm O}$ | Flight Mach number | Tunnel static pressure,
Po, (lb/sq ft abs.) | Engine speed, N
(rpm) | Corrected engine
speed, N/40, (rpm) | Compressor-inlet total temporature, T1, (OR) | Combustion-chamber-inlet
total pressure, P _S
(1b/sq ft abs.) | Combustion-chamber-inlet
total temperature, To
(OR) | Combustion-chamber-
outlet total pressure,
Pq. (1b/sq ft abs.) | Combustion-chamber-
outlet total tempera-
ture, T4, (OR) | Turbine-outlet total pressure, P ₆ (1b/sq ft abs.) | Turbine-outlet total
temperature, Tg, (OR) | Exhaust-nozzle-outlet
static pressure, py
(1b/sq ft abs.) | | <u> </u> | | | | | | | | | | _ | - | | | | | 1 2 3 3 4 4 5 6 6 7 7 8 9 100 114 115 114 115 117 118 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25 | 5,000
5,000
5,000
5,000
5,000
5,000
15,000
15,000
15,000
15,000
15,000
15,000
15,000
15,000
15,000
15,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,000
25,0 | 1.038
1.037
1.033
1.033
1.033
1.032
1.032
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203
1.203 | 0.230
.230
.230
.210
.210
.210
.220
.230
.230
.230
.230
.230
.230
.23 | 1740
1746
1746
1748
1748
1748
1748
1748
1748
1748
1188
118 | 7895 7695 7696 7696 6993 5944 4091 7895 7692 7500 6993 6459 5024 4091 7692 7690 6459 5024 4091 7692 7690 6459 5944 4091 7895 5944 4091 7895 5944 691 7692 7690 6959 5944 691 7692 7690 6959 5944 691 7692 7690 6959 5944 691 7692 7690 6959 5944 | | 512 512 512 513 510 509 509 509 509 506 506 506 506 506 506 506 506 506 455 455 456 456 456 466 466 466 466 46 | 708, 2 9359 9095 97980 5874 4215 3066 2419 1995 7262 7190 6966 6359 5169 4451 4185 5875 3486 2215 3486 2103 1498 1197 4188 1197 5175 5185 1075 1075 1075 1075 1075 1075 1075 107 | 900 894
872 836
764 683
623 683
623 683
623 683
683 683
683 683
884 685
884 685
884 685
884 685
884 685
884 685
884 685
885 687
741
885 687
886 687
886 687
886 886 886 886 887
788 888 888 888 888 888 888 888 888 | 02.76 1 69.77 67.76 67.7 | Rohes 8080 1980 1868 1694 1297 1263 1230 1181 2100 1945 1658 1459 1297 1065 850 2120 1156 1186 2156 2156 2166 2166 2166 2166 2166 216 | 3465
33527
2984
2403
2083
1924
1832
1769
2685
2649
2534
8029
1765
1458
1340
1258
1661
1545
1790
1900
1900
1900
1900
1909
1268
1549
1268
1458
1458
1458
1458
1469
1269
1269
1269
1269
1269
1269
1269
12 |
1740
1631
1542
1396
1126
1107
1154
1764
1614
1562
1200
1058
914
880
601
1783
1888
1244
1181
1011
1034
1161
1162
1781
1783
1783
1888
1244
1181
1011
1661
1652
1783
1783
1783
1783
1783
1783
1783
1783 | 2198
2198
2147
2076
1985
1820
1771
1766
1760
1680
1680
1681
1291
1209
1209
1209
1209
1209
1209
120 | | 48
49
50
51
52
53
54
55
56
57
58
59
60
62 | 25,000
25,000
25,000
25,000
25,000
35,000
35,000
35,000
35,000
35,000
35,000
35,000 | 1.612
1.857
1.817
1.839
1.940
1.032
1.036
1.036
1.030
1.028
1.204
1.211 | .855
.988
.965
.975
.975
.210
.220
.215
.205
.205
.195
.530 | 781
748
778
774
774
498
493
498
497
494
497
494 | 5024
7895
7692
7500
6993
7500
6993
6459
5024
4091
7692
7500
6993 | 5109
8029
77545
7545
7028
8315
8100
7545
6976
6420
5426
4414
8277
8070
7517 | 502
511
513
514
444
445
446
445
446
445
446
448
448
449 | 2599
7165
7088
6902
6230
2862
2717
2615
2256
1905
1385
980
5239
5142
2876 | 853
888
881
875
837
944
776
737
696
626
840
817
773 | 2468
6909
6803
6820
5974
2786
2616
2414
2170
1329
944
3023
2754 | 875
2038
1985
1870-
1655
2150-
2015
1725
1535
1535
1190
1186
2060
1916
1675 | 1089
2659
2598
2592
2292
1083
1010
928
846
740
617
563
1199
1169
1086 | 717
1705
1629
1554
1365
1814
1681
1428
1273
1138
1018
1062
1723
1598
1386 | 813
1584
1596
1856
1400
671
658
596
559
550
508
509
751
725
661 | ^aEngine speed corrected to MACA standard sea-level static conditions. ^bCalculated values obtained by using pressure-loss chart developed in reference 5. Data omitted. | DATA | FOR J | 47 TURB | OTET EN | GINE | | | | , | | | | | |---|-------------------------------------|--|--|--|--|--|--|--|--|--|--|--| | Exhaust-nozzle-outlet
Static temperature, tq
(OR) | flow, Wr
mr) | Engine-inlet air flow, | Combustion-chamber air
flow, Wa,b, (lb/sec) | Combustion-chamber
fuel-air ratio, f/a | Combustion
efficiency, $\eta_{\rm b}$ | Measured over-all total-pressure-loss ratio, $\Lambda^{p_{\mu}}/P_{\mathcal{B}}$ | Calculated over-all total-pressure-loss ratio, $\Delta {\rm P_T}/{\rm P_S}$ | Friction pressure-loss ratio, $\Delta P_{ m F}/P_{ m S}$ | un pressure-loss
AP _W /P ₃ | Engine-oyole
efficiency, n | Fractional loss
in engine-cycle
efficiency, an/n | | | 걸으 | 무실 | \ <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </u> | an . | y of | 82.50 | 1 - 0 | 즉발은 | 13 6 | t o | ne
c1 | में क्षेत्र | . 1 | | Stat
(OR) | Fuel f1
(1b/hr) | ngt | Combue
flow, | Combustic
fuel-air | 各다 | Measured
total-pre
ratio, Al | daloul:
total-;
ratio, | Friotic
ratio, | Momentum
ratio, A | 걸끈 | 8,1 | ã | | 절품은 | 로르 | A P | | | | 3 2 2 | 2 2 2 | | | 42 | Fra
In
eff | E | | L | | | Exh | aust-nos | | let area | | uare ino | | | - A | | | 1568 | 5300
4800 | 81.08 | 78.92 | 0.0187
0168
0151
0092
0088
0100
0085
0165
0161
0177
0056
0056
0194
0164
0155
0015
0081
0088
0109
0104 | 0.952
.951 | 0.0388 | 0.0394
.0398
.0406
.0413
.0455
.0454
.0403
.0293
.0186 | 0.0240
.0249
.0260
.0276
.0319 | 0.0184
.0149
.0146
.0137
.0136
.0138 | 0.245 | 0.045
.051 | 호 | |
1470
1388 | 4390 | 80.28 | 78.92
79.00
78.17
75.05
62.44
47.05
55.25
22.79 | .0156 | .947
.951
.979 | .0406
.0411
.0405
.0421
.0408
.0365
.0231 | .0406 | .0260 | .0146 | .241
.242
.221
.151
.089 | .053 | 254567 | | 1264
1091
1052
1101 | 3550 | 76.94 | 75.05 | .0151 | •951. | .0405 | .0413 | .0276 | .0137 | -221
-151 | .063 | 1 | | 1091 | 2060
1350 | 48.05 | 47.05 | .0092 | | -0408 | 0454 | .0318 | 0136 | .089 | 228 | 6 | | 1101 | 1050 | 34.21 | 35.23 | .0088 | 962 | .0365 | .0403 | .0318
.0273
.0190 | .0130 | .062
.028 | .272 | 7
8 | | 1155 | 820 | 25.73 | 22.79 | .0100 | .895 | 0231 | -0293 | *0150 | | -006 | -574
(c) | | | 1577 | 474
4130
3730
3395
2720 | 62.37 | 16.49
60.59
62.76
62.39
60.17
55.48
49.75
38.16
27.34
21.75
37.47
37.27
36.62
34.90
31.27
24.12
11.75
8.22 | .0189 | .952
.895
(o)
.958 | 0358 | | 0120
0254 | 0066
0151
0149 | _260 | 0.57 | 10
11
12
15
14
16
17
18
19
20
21 | | 1577
1446
1383 | 3730 | 64.50 | 62.75 | .0165 | .961 | .0406 | .0598 | 0249 | .0149 | 265 | 044
048
056 | 뭐 | | 1218 | 3595 | 64.09 | 62.39 | .0161 | -976 | -0406 | -0412 | -0277 | 0145
0158
0127 | .259
.244
.193 | .056 | 13 | | 1081 | TARC | 56.77 | 55.48 | .0100 | .961
.975
.950
.938
.973
.972 | .0406
.0409
.0406
.0424
.0440
.0442
.0429
.0575 | .0450 | 0505
0529 | .0127 | .193 | .087 | 14 | | 971
870 | 1380 | 50.82 | 49.75 | -0077 | .973 | .0440 | -0449 | .0329 | .0120 | .158
.067 | .128
.582 | 16 | | 870 | 770
549 | 27.95 | 27.34 | 40056 | 876 | 0429 | 0455 | .0360
.0320 | .0103 | | (3) | 17 | | 857
792 | 901 | 21.99 | 21.75 | .0046 | .867 | .0575 | 0425 | .0534 | .0091 | (0) | (o) | 뭐 | | 1607
1421
1249
1126 | 2610 | 38.38 | 37.47 | 0194 | .876
.867
.995
.975
.966
.950
.942
.938
.872 | 0500 | .0398
.0404
.0412
.0430
.0449
.0470
.0435
.0425
.0394
.0408
.0415
.0415
.0446
.0439 | .0225 | 0127
0120
0110
0103
0091
0161 | (c)
.252
.245
.255
.200 | .035
.045
.056 | 20 | | 1249 | 2200
1780 | 37.39 | 36.62 | 0155 | 966 | 0413
0402
0403
0390 | .0408 | .0260
.0278
.0290
.0311 | 0148 | .255 | .056 | 81 | | 1126 | 1420 | 55.39 | 34.90 | .0113 | -950 | -0402 | -0418 | -0278 | -0157 | .200 | .075 | 22 | | 1 1051 | 1420
1070
702
560 | 31.96 | 24.12 | .0098 | .932 | .0390 | .0446 | .0311 | 0148
0157
0150
0155
0144
0102
0159
0157
0157
0157
0129
0114
0118 | .126 | .141 | 22
25
24
25 | | 961 | 560 | 18.10 | 17.58 | .0089 | 872 | 1 .09.14 | .0459 | .0295
.0211 | 0144 | .055 | .520 | 25 | | 1 1082 | 440
366 | 12.24 | 11.75 | .0104 | -824 | .0257 | .0355 | .0211 | -0102 | -020 | .581
.295 | 26
27 | | 1146 | 5025 | 44.26 | 43.07 | 0195 | 824
770
976
980 | .0257
.0154
.0354
.0385
.0397
.0409
.0394 | .0250
.0390
.0395 | .0251
.0258 | 0159 | .055
.080
.025
.277
.276
.275 | .033 | 28 | | 1602
1490 | 3025
2725 | 44.25 | 45.20 | .0175 | .980 | .0585 | 0395 | .0238 | 01.57 | .276 | •058 | 29
30 | | 1386 | 2550
2030 | 45.17 | 44.19 | 0195
0176
0160
0130
0017
0084
0061
0058
0188
0177
0164
0125
0099
0067
0040 | 967 | .0397 | 0408
0412
0427 | .0246
.0267 | -0167 | 253 | 058
041
051 | 31 | | 1213
1075 | 1590 | 41.79 | 41.09 | .0107 | 958
937
937 | .0394 | 0427 | 0290
0316
0325 | .0157 | .183
.183
.098 | 065
097
240 | 32 | | 946
850 | 1139 | 38.14 | 37.54 | -0084 | .937
.955 | 0417 | | -0316 | .0129 | .188 | .097 | 35
34 | | 807 | 600
42 5 | 20.00 | 20.48 | -005B | 4846 | 0445
0438
0540
0346
0370
0400
0405 | .0459
.0478
.0572
.0395 | 0257 | .0118 | .031 | -861 | 28 | | 745 | 266 | 13.71 | 13.16 | .0056 | .846
.684
.992 | -0840 | .0572 | .0287 | -0085 | (c) | (c)
.028 | 36
57 | | 1577 | 266
3410
3150 | 51.82 | 50.34 | 0188 | 992 | -0370 | -0399 | 0234
0235
0249
0275
0305
0360 | .0085
.0161
.0153
.0144
.0135
.0128
.0097
.0151
.0127
.0105
.0079 | (e)
.304
.502
.279
.279 | .052
.039 | 1581 | | 1368
1211
1044
881 | 9750 | 50.78 | 49.44 | 0154 | .985 | .0400 | 0398
0419
0440 | .0249 | .0149 | .291 | .039 | 1 59 | | 1211 | 2220
1660
1020 | 50.34 | 49.15 | .0125 | .979
.955 | .0405 | .0419 | -0275 | .0144 | -279 | -045
-067 | 40 | | 881 | 1020 | 43.26 | 42.45 | .0067 | (6) | .0458 | 0488 | .0560 | .0128 | .186 | .107 | 42 | | 731 | 469
3050 | 32.96 | 32.44 | .0040 | [(a) | 0494 | .0500 | | .0097 | .059 | .559
.057 | 42
43
44
45
46
47 | | 1383 | 2420 | 56.50 | 54.98 | .0154 | .959
.935 | 0410
0402
0423
0449
0504 | .0410
.0401
.0437
.0458 | 0259
0270 | .0151 | 294 | .045 | 45 | | 1211 | 2420
1680 | 50.99 | 49.85 | 0094 | .946
.954 | .0422 | .0437 | .0510 | .0127 | .248 | .084 | 46 | | 858 | 970 | 45.33 | 44.45 | .0061 | 984 | .0449 | .0458 | -0555 | •0105 | .168 | .135
(c) | 48 | | 858
669
1512
1454 | 346
4000 | 63.45 | 43.07
43.20
44.19
43.49
41.09
57.54
27.51
50.46
49.44
49.46
49.46
52.44
52.46
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
52.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53.68
53 | .0094
.0061
.0027
.0180
.0167
.0152
.0200
.0175
.0140
.0118
.0100 | (°) | .0357 | .0402 | 0310
0355
0444
0245
0253
0265
0266 | 0157 | .186
.059
.294
.248
.168
.340
.340
.351
.511
.247
.245
.229
.202 | .026
.031
.034
.041
.035
.041
.054 | 49 | | 1454 | 3730 | 63.95 | 62.16 | .0167 | .962 | 0402 | .0402
.0408
.0415 | .0253 | 0157
0153
0150 | .340 | .031 | 501 | | 1386
1213
1636 | 3400 | 63.85 | 62.17 | .0152 | 962
968
960
989 | 0409
0411
0335 | .0415 | .0265
.0265 | -0150 | .551 | -047 | 51
52 | | 1636 | 2640
1719 | 24.42 | 25.86 | .0200 | .989 | .0335 | .0591 | 0219
0237
0253
0269
0291 | .0150
.0134
.0162
.0167
.0153
.0140 | .247 | .035 | 53
54 | | 1979 | 1,505 | 24.43 | 23.85 | .0175 | 1.013 | 1 .0372 | 0404
0406
0409
0428 | .0237 | .0167 | .245 | .041 | 54 | | 1286 | 1184 | 24.05 | 22.30 | -0140 | .982 | 0402
0381
0399
0397 | -0408 | .0255 | -0168 | - 202
9 223 | -056 | 55
56 | | 1151 | 944
723 | 20.57 | 20.13 | .0100 | .960
.938
.866 | .0399 | .0428 | 0291 | .0137 | .188 | (•093 | 57 | | 970
1036 | 497
381 | 15.99 | 15.57 | .0089
.0097 | .866
.862 | .0397
.0367 | .0428 | .0296
.0261 | .0132
.0140 | .104 | .172 | 58
59 | | 1548 | 1870 |
81.07
80.28
83.66
48.05
48.05
64.21
62.57
64.59
64.77
60.82
82.02
82.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.02
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83.03
83 | 27.89 | .0097 | .982 | .0355 | .0397 | .0233 | .0164 | .168
.104
.066
.273 | 246
034
039 | 60 | | 1451 | 1690 | 28.66 | 28,00 | .0168 | 4966 | .0379 | .0399 | .0242 | -0157 | • 258 | .039 | 61
62 | | 1240 | 1300 | 28,25 | 27.64 | .0131 | •98 <u>8</u> | .0424 | -0418 | .0267 | .0151 | .247 | .053 | 102 | TABLE I - COMBUSTION-CHAMBER PERFORMANCE | _ | | | | | | | | | | | | | | | |--|--|--|---|---|--|--|--|--|--|--|--|---|---|---| | Run | Altitude
(ft) | Ram pressure ratio,
P1/P0 | Flight Mach number | Tunnel static pressure, pp. (lb/sq ft abs.) | Grind Speed, N | Corrected engine speed, N//61, (rpm) | Compressor-inlet total | Combustion-chamber-inlet in total pressure, Pg (1b/sq ft abs.) | | Combustion-chamber-
outlet total pressure,
Pa, (1b/sq ft abs.) | Gombustion-chamber-
o outlet total tempera-
ture, T4, (OR) | Turbine-outlet total pressure, Pg (1b/sq ft abs.) | Turbine-outlet total temperature, Tg, (OR) | Exhaust-possis-outlet
static pressure, pq
(lb/sq ft abs.) | | L | | | | | | | | | | | | | 1215 | 600 | | 63
64
65
66
67
68
69
70 | 35,000
35,000
35,000
35,000
35,000
35,000
35,000
45,000
45,000
45,000
45,000
45,000 | 1.200
1.802
1.198
1.409
1.411
1.413
1.407
1.411
1.405
1.007 | 0.520
520
51.6
720
720
720
720
720 | 496
496
495
494
494
496
496 | 6459
5944
7800
7692
7500
6993
6459 | 6986
6396
5421
8393
8284
8093
7552
6982 | 447
448
446
448
447
446
445
444 | 2566
2182
1505
5845
5784
5626
5410
5019 | 733
691
614
852
838
811
765
726 | 2463
2091
1438
3705
3652
3522
3270
2900 | 1470
1276
1037
2124
2061
1902
1655 | 945
817
644
1427
1403
1350
1256
1101 | 1051
876
1782
1724
1579
1373 | 550
515
892
874
839
768 | | 71 | 35.000 | 1.411 | .720 | 494 | 5944 | 6443 | 442 | 2538 | 681 | 2450 | 1449 | 924 | 998 | 683
594 | | 78
78
74
78 | 35,000
45,000
45,000 | 1.405
1.037
1.029
1.037
1.035
1.030 | .715
.225
.200 | 496
298
508
297 | 5944
5455
7500
6993
6459
5944 | 6443
5913
8130
7545
6995
6420 | 442
446
445 | 2075
1714
1561
1374 | 637
835
786
740
701 | 1982
1657
1505
1322
1134 | 1032
2130
1810
1585
1415 | 772
637
582
510
466 | 849
1793
1510
1316 | 556
404
576
544 | | 76 | 45,000 | 1.033 | .210
.205 | 306
305 | 5024 | 5431 | 445
444 | 1181
852 | 652 | 802 | 1260 | 578 | 1176
1076 | 559
516 | | 78 | 45.000 | 13.20A | .528 | 301 | 7692 | 8307 | 446 | 1992 | 851 | 1927 | 2179 | 750 | 1930 | 474 | | 79 | 45,000
45,000 | 1.209
1.198
1.204
1.205 | -550 | 301 | 7500 | 8095 | 446 | 1925 | 828 | 1858 | 2035 | 713 | 1710
1458
1253 | 451
416
370 | | 80 | 45,000 | 1.204 | .515
.525 | 503
504 | 6993
6459 | 7559
6995 | 444 | 1752
1572 | 776
730 | 1696
1511 | 1745
1510 | 648
578 | 1253 | 570 | | 88 | 48,000
48,000
45,000
50,000
50,000
50,000 | 1.205 | .525 | 505 | 6459
5944 | 6437
5441
8125
7678 | 443 | 1327 | 690 | 1275 | 1315 | 502
388 | 1087 | 544
511
500 | | 85 | 45,000 | 1.203 | .520 | 296
225
236 | 5084
7500
6993 | 5441
8125 | 443
443
443 | 909
1876 | 619 | 872
1259 | 1080 | 388
469 | 915
1812 | 500 | | 85 | 50,000 | 1.025 | 1.85 | 236 | 6998 | 7678 | 443 | 1204 | 842
789 | 1159 | 2145
1858 | 446 | 1554 | 290 I | | 86 | 50,000 | 1.025
1.025
1.025 | .185 | 258
259 | 6459
5944 | 7008
6455 | 441 | 1067
936 | 739
701 | 1051 | 1610
1458 | 404
565 | 1546
1221 | 271
260 | | 87 | 80,000 | 1.020 | | | OZZIO | outlet | | | squar | | | | TWOL | -200 | | | F 000 | 7 000 | | | 7895 | 8077 | 496 | 6928 | 868 | 8573 | 1817 | 3066 | 1485 | 1978 | | 88 | 5,000 | 1.036 | 0.220 | 1740
1745 | 7692 | 7861 | 497 | 8637 | 852 | 8301
8105 | 1735 | 2993 | 1415 | 1946 | | 90 | 8,000 | 1.036 | 220 | 1755 | 7500 | 7658 | 498 | 8440
7770 | 840 | 83.05 | 1652 | 2935
2742 | 1351 | 1927 | | 91 | 5,000
5,000
5,000
5,000
5,000
5,000
5,000 | 1.036
1.033
1.030 | .220
.215
.206 | 1747
1745 | 6993
6459 | 7133
6875 | 499
501 | 6865 | 807
769 | 7456
6581 | 1516
1589 | 2742 | 1236
1138 | 1856 | | 93 | 5.000 | 11.030 | 1 -206 | 1745 | 5944 | 6051 | 501 | 5867 | 735 | 5612 | 1290 | 2306 | 1071 | 1610
1784
1776
1765 | | 94 | 5,000 | 1.030 | .198 | 1754 | 5024 | 5114 | 501 | 1278 | 667 | 4096 | 1170 | 2087 | 1013 | 1776 | | 95
96 | 5,000 | 1.029 | .198 | 1748
1745 | 4091 | 4173 | 499 | 3093
2427 | 611
562 | 2975
2355 | 1155
1162 | 1906
1827 | 1101 | 1752 | | 97 | 5.000 | 1.029 | .198
.803 | 1748 | 3147
2046
7895 | 3213
2091 | 497 | 2012 | 525 | 1982 | 1119 | 1779 | 1097 | 1763 | | 98 | 5,000
25,000 | 1.051 | -802 | 785
781 | 7895
7692 | 8400
8169 | 458
460 | 4231
4032 | 847
824 | 4079
3872 | 1900 | 1467
1397 | 1555
1440 | 955
905 | | 100 | 25,000 | 1.032 | .205
.205 | 781 | 7500 | 7980 | 458 | 5926 | 805 | 8770 | 1868 | 1357 | 1356 | 885 | | 101 | 25,000
25,000
25,000 | 1.029 | .200 | 781 | 7500
6993
6459 | 7441 | 1458 | 3651 | 766 | 5502 | 1668
1497 | 1278 | 1220 | 851
826 | | 102 | 25,000
25,000
25,000
25,000
25,000 | 1.029 | *800 | 781
781 | 5024 | 6918
8891 | 452
451 | 5529
2085 | 726
620 | 3196
1999 | 1561
1092 | 943 | 935 | 796 | | 104 | 25,000 | 1.028 | .198 | 781 | 4091 | 14349 | 459 | 1466 | 569 | 1411 | 1102 | 866 | 993 | 793
704 | | 105 | 25,000 | 1.032 | .203 | 783
774 | 3147
2046 | 3336
2167 | 462 | 1114 | 525
488 | 1080 | 1110 | 823
788 | 1050 | 704 | | 206 | 000 ومع | 1.031 | .203 | aust-n | | outlet | | | squar | | | | | ' | | 300 | I # 000 | 11 054 | | 1752 | 7895 | 8084 | 495 | 8448 | 854 | 8137 | 1652 | 2686 | 1308 | 1801 | | 107 | 5,000
5,000 | 1.034 | 0.215 | 1745 | 7692 | 7869 | 498 | 8237 | 838 | 7897 | 1564 | 2648 | 1252 | 1794
1794
1779 | | 109 | 5,000 | 1.030 | .210 | 1753
1753 | 6993
6459 | 7140
6601 | 498
497 | 7481
6655 | 794 | 7186
6364 | 1372 |
2493
2307 | 1100 | 1794 | | 110 | 5,000
5,000
5,000 | 1.027 | .220 | 1765 | 5944 | 6078 | 497 | 6738 | 726 | 5486 | 1206 | 2147 | 986 | I ገማልፕ ፤ | | 112 | 5,000
5,000
5,000
5,000
25,000
25,000
25,000 | 1.030 | .210 | 1755 | 5024 | 5135 | 497 | 4227 | 663 | 4042 | 1115
1108 | 1 1022 | 957
1006 | 1760
1746
1744 | | 113 | 5,000 | 1.029 | .200 | 1744 | 4091 | 4177
3219 | 498 | 3060
2397 | 605
560 | 2957 | 11120 | 1860
1806
1765 | 1060 | 1744 | | 1118 | 5,000 | 1.029 | 200 | 1744
1742
781 | 3147
2046
7895 | 2095 | 495 | 1982 | 1519 | 1954
3781 | 1075 | 1765 | 1048 | 1742 | | 116 | 28,000 | 1.032 | .210 | 781 | 7895 | 8361 | 463
463 | 3938
3827 | 834
819 | 3781
3668 | 1636
1587 | 1212 | 1311
1265 | 804
804 | | 117 | 25,000 | 1.032 | .210 | 781
778 | 7692
7500 | 8146
7943 | 463 | 3697 | 800 | 3545 | 1493 | 1169 | 1206 | 801 | | 119 | 25,000 | 1.029 | .200 | 781 | 6993 | 7415
6853 | 462
461 | 3490 | 765 | 3348
3028 | 1382 | 1169
1112
1060 | 1100 | 801
799 | | 120 | 25,000 | 11.028 | 1 .200 | 781 | 6459 | 6863 | 461 | 3163
2759 | 730
696 | 3028
2636 | 1271
1175 | 1060 | 1010 | 799 | | 121 | 25,000
25,000
25,000
25,000 | 1.027 | .195
.195 | 780
780 | 5944
5024 | 6313
5341 | 460
459 | 2012 | 627 | 1926 | 1064 | 889 | 902 | 791
789 | | 1.25 | 120,000 | 1.028 | .200 | 781 | 4091 | 4349
3348 | 459 | 1433
1134 | 565 | 1579 | 1052 | 837 | 947 | 784 | | 124 | 25,000 | 1.028 | .200 | 776 | 3147 | 3348 | 458 | 1134 | 524 | 1062 | 1081 | 802 | 1019 | 779 | ^{*}Engine speed corrected to NACA standard sea-level static conditions. boalculated values obtained by using pressure-loss chart developed in reference 5. OData omitted. DATA FOR J47 TURBOJET ENGINE - Concluded | DATA | FOR J | 47 TURB | OJET EN | HNB - C | onclude | • | | | | | | | |---|---------------------|----------------------------------|------------------------------------|---|--------------------------|----------------------------------|--|-----------------------------------|-------------------|----------------------------|----------------------------------|----------------------| | Exhaust-nozzle-outlet
static temperature, t ₇
(OR) | N. | et air flow, | tion-chamber air
Ma,b, (1b/sec) | Combustion-chamber
fuel-air ratio, f/a | ę. | over-all
ssure-loss
7/P3 | Calculated over-all total-pressure-loss ratio, ${ m kPr}/{ m P_D}^2$ | pressure-loss
F/P ₃ | pressure-loss | յն
, դ | loss
cycle
, An/n | | | st-no:
o tems | flow,
r) | Engine-inlet
Wg, (1b/sec | | stion- | Combustion
efficiency | : 08 ₽4 ∣ | Calculated of total-pressuratio, APT/1 | - Co | # 24 | Engine-oyel
efficiency, | Fractional los
in engine-cycl | | | Exhausi
statio
(OR) | Fuel flo
(1b/hr) | Engin
Wa, (| Combus
flow, | Combustic
fuel-air | Combu | Measured
total-pr
ratio, A | Calculatotatel | Friction
ratio, Al | Moments
ratio, | Engir
effic | Fracti
in eng
effici | Pga | | - | | | haust-n | zzle ou | tlet ar | ea, 280 | square 1 | nches - | Conclude | a | | | | 1085 | 1000 | 26.25 | 25.63 | 0.0108 | 0.959 | 0.0402 | 0.0405 | 0.0274 | 0.0131 | 0.218 | 0.068 | 65 | | 951 | 760 | 24.32 | 23.93 | .0088 | .919 | .0417 | .0441 | .0311 | •0130 | .181
.092 | .095
.253 | 64
65 | | 1601 | 430
2295 | 18.82 | 18.50
52.88 | .0065
.0194 | .879
.992 | .0359 | .0468
.0401 | .0347 | .0121 | .305 | .029 | 66 | | 1547 | 2165 | 33.83 | 32.96 | .0182 | 1.007 | 0349 | .0406 | .0237 | .0169 | -508 | .029 | 67 | | 1413 | 1950 | 54.14 | 33.38 | . AT AO | .992 | .0287 | .0424 | .0257 | .0167 | .298 | .025 | 68 | | 1224 | 1550 | 35.76 | 33.02 | .0130 | .987
.975 | .0411 | .0419 | .0268
.0295 | .0151
.0145 | .279 | .044
.055 | 69 | | 1064
891 | 1175
820 | 32.19
29.09 | 51.50
28.61 | .0080 | .937 | -0426 | 0454 | 0324 | -0150 | 214 | -082 │ | 70 | | 771 | 544 | 26.10 | 25.69 | .0059 | 914 | .0448 | .0481
.0374 | .0365 | .0116 | .142 | -162 | 72 | | 1618 | 1030 | 26.10
14.72 | 14.25 | .0201 | .976 | .0553 | .0374 | -0216 | .0158 | .252
.226 | -034
-047 | 75
74 | | 1364
1198 | 788
615 | 14.43
13.78
12.42 | 13.96
13.33 | .0157 | .955
.939 | .0359 | .0384
.0405 | .0235
.0260 | .0149 | .201 | .063 | 75 | | 1088 | 474 | 12.42 | 11.97 | .0110 | 907 | .0398 | 0402 | .0269 | .0153 | .173 | -087 | 75
76 | | 1031 | 326 | 9.81
17.28 | 9.57 | .0097 | .884 | .0361 | .0402
.0444
.0597 | .0299 | .0145 | .101 | .155 | 77
78 | | 1651 | 1225 | 17.28 | 16.80 | .0203 | .993
.989 | .0326 | .0397 | .0226
.0232 | .0171
.0163 | .279
.265 | .029
.035 | 78 | | 1540 | 1093 | 17.15 | 16.68
16.27 | .0182 | 970 | .0377 | 0403 | .0250 | 0153 | .245 | .046 | 80 | | 1125 | 847
655 | 16.67 | 18.83 | .0145
.0115 | .956 | -0588 | 0421
0455 | .0276 | _0145 | .212
.176 | .065 | 80
81
82 | | 989 | 497 | 14.87
11.35
10.97 | 114-62 | 0094 | .918 | .0392 | .0453 | .0315 | .0140
.0135 | | .089
.250 | 82 | | 865 | 271 | 11.35 | 11.16 | .0067 | .933
.986 | .0407 | .0482
.0386 | .0349
.0222 | .01.55 | .088
.240 | -051 | 85
64
85
88 | | 1637
1406 | 773
637 | 10.97 | 10.72 | .0165 | .951 | 0374 | -0388 | -0235 | 0155 | .224 | -049 | 85 | | 1224 | 493 | 10.54 | 10.11 | .0135 | .922 | .0337 | .0392 | .0248 | .0144 | .195
.165 | .058 | 88 | | 1124 | 416 | 9.62 | 8.59 | .0123 | .864 | .0374 | .0401 | .0265 | .0138 | -165 | .085 | 87 | | | | | | | | let area | | ware inc | | | | | | .1341 | 4320 | 81.86 | 79.77 | 0.0150 | 0.931 | 0.0398 | 0.0397 | 0.0259 | 0.0138
.0156 | 0.215
.202 | 0.060 | 88
89 | | 1280 | 3910
3600 | 81.82
81.83 | 79.84
79.92 | .0156
.0125 | .940
.940 | .0389
.0397 | .0408 | .0281 | .0131 | .196 | 072 | 90 | | 1127 | 3000 | 78.55 | 76.80 | .0108 | .934 | .0404 | .0422 | .0294 | .0128 | .182 | •086 | 90
91
92 | | 1050 | 2400 | 72.30 | 76.80
70.76 | .0094 | .918 | .0414 | .0427 | •0505 | .0122 | .160 | .111 | 92
93 | | 1006 | 1850 | 64.11
49.38 | 62.81 | .0082 | .940
.978 | .0434
.0425 | .0452
.0441 | .0315
.0521 | .0119 | .076 | •153
•288 | 93 | | 977 | 1250
999 | 36.38 | 48.54
55.94 | .0077 | .959 | .0381 | 0444 | .0508 | .0136 | .037 | .518 | 9 <u>4</u>
95 | | 1089 | 768 | 25.40 | 25.08 | .0085 | .952 | .0297 | .0339 | .0224 | -0118 | •050 | .720 | 96 | | 1093 | 502 | 15.06 | 14.89 | .0094 | .849
.942 | .0149
.0359 | .0159 | .0107
.0240 | .0052
.0147 | (c)
•209 | (o)
.051 | 97
98 | | 1423 | 2200
1940 | 37.77
37.39 | 56.80
56.49 | .0166
.0148 | 929 | -0359 | 0393 | 0252 | .0141 | .199 | 063 | 99 | | 1239 | 1760 | 57.51. | 36.47 | .0154 | .934 | .0597 | .0395 | .0260 | .0135 | .196 | .068 | 100 | | 11119 | 1450 | 36.54 | 36.47
35.76 | .0113 | .916 | .0408 | -0399 | -0274 | .0125 | .175
.159 | .088 | 101 | | 1022 | 1190 | 35.26 | 34.59 | .0096
.0076 | .921
.844 | .0400
.0415 | .0419
.0429 | .0293 | .0138 | .078 | 269 | 103 | | 973 | 513 | 24.49
16.93 | 24.14
16.71 | .0085 | .844 | .0375 | .0403 | .0276 | .0127 | .049 | .577 | 104 | | 1042 | 425 | 12.32 | 12.17 | .0097 | .812 | .030B | .0559 | .0233 | .0126 | .018 | .816 | 105 | | 1062 | 341 | 7.67 | 7.59 | .0125 | .647 | .0133 | 0204 | .0129 | .0075 | •005 | (0) | 700 | | | | | _ | aust-nor | | let area | | uare inc | | T 0 3 00 | 0.000 | 100 | | 1199 | 3450 | 82.17 | 80.24 | 0.0119 | 0.942 | 0.0368 | 0.0418 | 0.0288 | 0.0130 | 0.160
.159 | 0.086
.101 | 107 | | 1152 | 3200
2470 | 78-42 | 79.46
76.78 | .0089 | 903 | 0421 | .0427 | .0313 | .0114 | .155 | .141 | 109 | | 974 | 1990 | 81.30
78.42
72.30
64.61 | 71.34
63.59 | .0077 | .931 | -0434 | -0442 | .0328 | -0114 | .117 | .181
.201 | 끪 | | 942 | 1575 | 64.61 | 63.59 | .0069 | .961
.967 | .0439
.0438 | .0442 | .0328 | .0111 | .055 | .443 | 112 | | 930
991 | 910 | 49.49
36.37 | 48.67
35.84 | .0003 | 942 | 0557 | .0458 | .0310 | -03.28 | .014 | (a) | 113 | | 1051 | 765 | 23.97 | 23.75 | .0089 | .842 | .0292 | 0303 | .0206 | .0097
.0084 | .005 | {e} | 114
115 | | 1045 | 450 | 15.05 | 14.99 | .0083 | .896 | .0141 | .0165 | .0111 | 0125 | .008 | .092 | 116 | | 1195 | 1681
1656 | 37.53
37.28 | 36.65
36.46 | .0127 | .913
.929 | .0399 | .0393 | .0278 | .0123 | .165 | -093 | 117 | | 1108 | 1417 | 37.01 | 36.44 | .0108 | .908
.912 | .0411 | 404.15 | -0290 | .0125 | .130 | .126 | 118 | | 1016 | 1204 | 36.37 | 35.65 | .0094 | .912 | -0407 | -0417 | .0298 | .0119 | .145
.139 | .125
.118
.140 | 119 | | 943
895 | 988 | 54.62
51.60 | 54.19
50.96 | .0080 | .923 | .0427 | .0459 | .0519
.0528 | .0120 | 138 | 170 | 121 | | 877 | 81.8
580 | 25.99 | 25.64 | .0068 | .872 | .0444
.0427 | .0437 | .0324 | .0113 | .071 | .326 | 122 | | 933 | 474 | 16.94 | 16.74 | .0079 | .826 | .0377 | -0411 | •0288 | .0123 | .032 | -610 | 125 | | 1012 | 401 | 11.80 | 11.76 | .0095 | .789 | .0635 | .0318 | .0211 | .0107 | .010 | (0) | 134 | | | | | ı | | | | |-----|---|---|-------|---|---------------|---| | | | | | • | | | | | | | | | | | | | | | | | | • | | . • | | | | | | • | | | | | | | | • | | | | | | | | - | • | | | • | • | | | | | | • | | | | | | | | | | _ | | · | . | | | | | • | | | | | | | | | | | | | | | • | · · — | | • | _ | | | | | | | | | | |
 | | | | - | ... • ... Figure 1. - Installation of turbojet engine in altitude wind tunnel. | - | |
 | ······································ | - | • | |---|---|------|--|---|------| | | · | | | | • | | | | | | | | | | | | | _ | | | | | | | , ·• | | | | | - | | ••• | | | | | | | | · · · · · · · - - | Station | Total-
pressure
tubes | Statio-
pressure
tubes | Wall static-
pressure
crifices | Thermo- | |---------|-----------------------------|------------------------------|--------------------------------------|---------| | 1 | 40 | 4 | 0 | 8 | | 2 | 24 | 0 | 4 | 0 | | 2a, | 0 | 0 | 13 | 0 | | 3 | 20 | . 0 | 4 | 6 | | 4 | 5 | 0 | 0 | O | | 6 | 30 | 0 | 2 | 24 | | _ 7 | 18 | 5 | 4 | 1.4 | Figure 2. - Cross section of turbojet-engine installation showing sections at which instrumentation was installed. - O Total-pressure tube - Static-pressure wall orifice - X Thermocouple. - C Combustion-chamber center line (a) Compressor outlet, station 3; $3\frac{1}{4}$ inches behind trailing edge of outlet guide vanes. Figure 3. - Instrumentation of turbojet engine. Viewed from upstream. 1218 462-1767 O Total-pressure tube Combustion-chamber center line (b) Turbine inlet, station 4; in plane of leading edge of turbine-stator blades. Figure 3. - Continued. Instrumentation of turbojet engine. Viewed from upstream. - O Total-pressure tube - Static-pressure wall orifice - × Thermocouple (c) Turbine outlet, station 6; $10\frac{1}{2}$ inches downstream of turbine flange. Figure 3. - Continued. Instrumentation of turbojet engine. Viewed from upstream. 121 2-1769 o Total-pressure tube • Static-pressure tube x Thermocouple (d) Exhaust-nozzle outlet, station 7; 1 inch in front of rear edge of exhaust-nozzle outlet. Figure 3. - Concluded. Instrumentation of turbojet engine. Viewed from upstream. Figure 4. - Three-quarter front view of combustion-chamber liner. | | | | | • | |---|---|---|------------|-----------| | | | | • | • | | | | | | • | | | | | | • | _ | | | | | | <u></u> . | | | | | | • | | | | | | | | | | | | | | • | | · | - <u> </u> | • = | • | | | | • | | | | | | | | | | | | | | | . 4 | | | | | | | Figure 5. - Effect of corrected engine speed and altitude on combustion efficiency of engine with standard exhaust nozzle at flight Mach numbers of 0.21 and 0.52. Figure 6. - Effect of corrected engine speed and flight Mach number on combustion efficiency of engine with standard exhaust nozzle at altitudes of 25,000 and 35,000 feet. Figure 7. - Effect of corrected engine speed and exhaust-nozzle-outlet area on combustion efficiency of engine at altitudes of 5000 and 25,000 feet and flight Mach number of 0.21. Figure 8. - Effect of corrected engine speed and altitude on measured and calculated total-pressure-loss ratios through combustion chamber of engine with standard exhaust nozzle at flight Mach number of 0.21. Figure 9. - Effect of corrected engine speed and flight Mach number on measured and calculated total-pressure-loss ratios through combustion chamber of engine with standard exhaust nozzle at altitude of 25,000 feet. Figure 10. - Effect of corrected engine speed and exhaust-nozzle-outlet area on measured and calculated total-pressure-loss ratios through combustion chamber of engine at altitude of 5000 feet and flight Mach number of 0.21. (b) Fractional loss in engine-cycle efficiency. Figure 11. - Effect of corrected engine speed and altitude on engine-cycle efficiency and fractional loss in engine-cycle efficiency with standard exhaust nozzle at flight Mach number of 0.21. Figure 12. - Effect of corrected engine speed and flight Mach number on engine-cycle efficiency and fractional loss in engine-cycle efficiency with standard exhaust nozzle at altitude of 25,000 feet. NACA-Langley - 12-15-50 - 525 (b) Fractional loss in engine-cycle efficiency. Figure 13. - Effect of corrected engine speed and exhaust-nozzle-outlet area on engine-cycle efficiency and fractional loss in engine-cycle efficiency at altitude of 5000 feet and flight Mach number of 0.21.